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Multi-concept visual classification is emerging as a common environment perception technique, with applications in
autonomous mobile robot navigation. Supervised visual classifiers are typically trained with large sets of images, hand
annotated by humans with region boundary outlines followed by label assignment. This annotation is time consuming, and
unfortunately, a change in the environment requires new or additional labeling to adapt visual perception. The time it takes for a
human to label new data is called adaptation latency. High adaptation latency is not simply undesirable, but may be infeasible
for scenarios with limited labeling time and resources. We introduce a labeling framework that significantly reduces adaptation
latency using unsupervised segmentation and clustering in exchange for a small amount of label noise. We demonstrate the
framework’s speed and ability to collect environment labels that train high-performing, multi-concept classifiers in several
outdoor urban environments. Finally, we show the relevance of this label collection process for visual perception as it applies to
navigation in outdoor environments.
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1. Introduction
Accurate environment perception is critical for autonomous robots to plan paths on
traversable terrain and avoid object collision during navigation. While many sen-
sors have been used to help with perception,1–4 speedups in image processing have
allowed vision-based perception to emerge in mobile robots.4–10 Visual classifica-
tion is an important task for many applications, but is particularly useful for path
planning because visual data allow robots to perceive a large area of the environ-
ment at once. However, a variety of challenging properties associated with visual
data can make it difficult to train classifiers. These challenges may include changes
in illumination, scale, perspective, color, and background clutter.

Classifiers can learn to account for these factors, but generally need large amounts
of training data to sample and model these variations. While collecting visual data
is a trivial task, the raw data contain no label information from which supervised
classifiers can learn. Label collection is a burdensome task for human annotators as
it requires human intervention to assign semantic labels to training instances, and
unfortunately, may not be a one-time event. For example, to ensure the highest qual-
ity visual perception for mobile robots, training data should be collected from the
environment where navigation tasks will be performed. Thus, each domain change
requires new data collection and labeling.

Furthermore, state-of-the-art deep learners11,12 now rely on millions of images for
learning. Label collection for the ImageNet data set13 was performed in parallel via
crowdsourcing, but took a combined total of approximately 19 person-years.14 This
process is even more demanding for scene labeling classifiers,15–17 because distinct
regions in images must be outlined before assigning labels. This is infeasible for ap-
plications with limited labeling time and resources. We define the time for a human
to label a new set of training data as adaptation latency. In our robot navigation ex-
ample, this represents the time robots are unable to navigate autonomously because
perception models are being adapted.

To keep up with the demand for labeled training data, more semi-supervised and
unsupervised label collection techniques need to be developed to help reduce the
overall labeling workload. Specifically, we have identified 4 objectives important in
the design of such label collection techniques.
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1) Learning a label set: Since the training data are initially unlabeled, we as-
sume the set of visual concepts in the data is also initially unknown. The pro-
cess of learning a label set, commonly referred to as concept discovery,18–20

determines the classes a classifier will learn to recognize. Only concepts with
labeled training examples can be accurately accounted for at test time.

2) Reducing the workload: The motivation of this work, reducing labeling ef-
fort, is an objective itself. We refer to the degree in which labeling effort is
reduced as labeling efficiency. Labeling efficiency is discussed with respect
to 1) the overall effort required to label training data (i.e., user interactions)
and 2) the overall time required to label training data.

3) Maximizing label counts: Trivially, reducing labeling effort can be achieved
by simply labeling fewer training samples. However, a small labeled set may
not be sufficient to train high-performing classifiers. We refer to this objective
as exploitation of the training data.

4) Maintaining accuracy: There is always the possibility for error when hu-
mans assign labels to visual data. For example, gravel may be mistaken for
asphalt or a user may mistype car as cat. The fraction of nonerroneous la-
bels is defined as label accuracy, and the fraction of label errors represents
label noise. High label accuracy is important because noise creates confusion
during classifier training. Beyond human error, most label noise discussed in
this report is introduced by frameworks that employ group-based labeling to
improve labeling efficiency. Visual data believed to represent the same visual
concept are grouped together, and the entire group is assigned a single label
to describe the data (see Fig. 6). When the group of images in fact represents
multiple classes, label noise is introduced.

Each objective plays a critical role in determining the success of classifier training.
However, the frameworks that have emerged to help alleviate labeling effort tend
to focus on a subset of the labeling objectives we laid out instead of working to-
ward all 4. Active learning frameworks21–25 reduce the workload by labeling only
a subset of samples, so of course they do not maximize the label count. Moreover,
active learning systems typically assume the label set is known in advance, and run
the risk of increasing the total work time by introducing latency while classifiers
are retrained. Group-based labeling techniques such as partitional clustering,26–28
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incremental clustering,18,29 active clustering,30,31 and topic modeling32,33 reduce the
workload by labeling groups instead of instances, but can suffer from high label
noise or reduced efficiency if the label noise is removed.

Unfortunately, adaptation latency has yet to be discussed in existing supervised 
multi-concept visual perception systems used in robotics applications.1,5–7 Anno-
tation of images is performed as a necessary but time-consuming step to train su-
pervised classifiers. U nsupervised o r s elf-supervised a pproaches h ave b een used 
to eliminate labeling effort,3,10,34–37 but produce a limited environment vocabulary 
(e.g., traversable vs. non-traversable). These techniques do not generalize well to 
more complex navigation tasks that require a richer set of scene semantics, such as 
verbal navigation commands from humans.38

Our work is motivated by scenarios that need more than a binary understanding of
environments, and that have limited time and resources to collect this information.
We discuss our labeling framework designed to model and balance each of the 4
objectives to yield fast label collection that trains high-performing visual classifiers.
Specifically, our approach is a group-based labeling technique where groups are
selected from a hierarchical clustering of the data. By maintaining a hierarchical
clustering, our approach establishes a space of groupings that map to coarse and
fine-grained visual concepts. This allows the system to search the hierarchy and
discover groups that match the concept granularity of the classifier and thereby
keep label noise to a minimum. These groups are identified by searching for local
structural changes in the hierarchy. This selection heuristic is combined with criteria
that reward exploration of the search space to discover new visual concepts and
labeling large clusters to maximize efficiency and total label count. Overall, these
measures model our defined objectives, identify clusters from the hierarchy that
can be labeled with little effort, produce minimal label noise, and most importantly
collect data that train high-performing visual classifiers.

Using several outdoor urban environments, we show that visual perception trained
with our efficient label collection technique allows for reliable path planning and
successful navigation. We compare the approach to a fully supervised labeling ap-
proach by evaluating pixel labeling rate, pixel-wise classification, and autonomous
navigation via road terrain with respect to adaptation latency.

3
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2. Related Work
2.1 Label Collection
There are 3 dominant approaches used to address the labeling workload problem:
crowdsourcing, active learning, and group-based labeling. Crowdsourcing via mar-
ketplaces such as Amazon Mechanical Turk has become a popular way to collect
large sets of annotated visual data.13,39 This technique allows the label collection
process to be split into smaller units of labor, and these tasks are distributed to a set
of human resources who work in parallel. Crowdsourcing has several shortcomings.
First, this approach can be quite costly for data sets with millions of images since
users are paid per labeling task. Second, it has been found that users are highly in-
consistent in their labeling.40 These labeling inconsistencies require reconciliation
and verification steps that also require human effort.

Active learning is an instance-based labeling approach that tries to identify an infor-
mative subset of training samples to label with a supervised learner in the loop. Se-
lection criteria include uncertainty sampling,22–24 Gaussian process models,21 and
information density.25 Active learning reduces the number of image instances a
user must label, but often requires a priori knowledge for classifier seeding and
introduces latency while iteratively retraining classifiers. Active learning has been
combined with crowdsourcing,41,42 but Vijayanarasimhan et al.41 note that retrain-
ing classifiers after each labeling queries creates latency that makes the parallelism
of crowdsourcing less evident.

Group-based labeling reduces workload by providing a single label to a group of
samples. Clustering26–28 and topic modeling32,33 form groups through bottom-up
discovery, requiring no a priori knowledge of the unlabeled data. These techniques
try to find a 1-to-1 mapping between groups and visual concepts. Unfortunately,
visual data properties make partitioning the data difficult and groups often contain
data from multiple classes. Assigning the dominant class label to an entire set of
images that represent multiple concepts can create label noise.

Label noise can be reduced at the cost of additional labeling effort and labeling
latency. Active clustering improves group coherency by iteratively collecting con-
straints indicating whether 2 images represent the same class.30,31,43 This constraint
information is used to augment feature representations and recluster data. Lee and
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Grauman cluster the “easiest" subset of unlabeled data and label a single group on
each iteration to improve overall group coherency.18 A largest subset labeling ap-
proach is used by Galleguillos et al. in their iterative labeling approach with multiple
kernel metric learning.29 Largest subset labeling eliminates label noise by asking a
user to remove images from a group that do not represent the dominating class label.
Each of these techniques introduces reclustering latency after each labeling query.

Related, there has been work on how to reduce labeling effort for video data. Xie
et al. introduce a label transfer approach where coarse 3-D annotations of street
scenes can be transferred to 2-D images.44 Other semi-supervised label propaga-
tion for video streams has also been achieved with random forests45 and a mixture
of temporal trees.46 These approaches use the information encoded by temporal
consistency to reduce labeling effort, but are not compatible for large sets of nonse-
quential training images (e.g., environment A in our experiments).

2.2 Visual Perception in Robotics
Vision provides valuable perception for mobile robots. Terrain and obstacle clas-
sification are particularly important to help determine traversability. For example,
visual terrain classification has been used to identify when legged robots should
change gaits,6,7 and aerial robots can identify possible landing sites or be used to
communicate with ground robots when working in teams.5 Visual perception is also
being used for path planning on ground robots. Haselich et al. fuse 3-D laser scans
and camera images to perceive road, rough, and obstacle terrain classes.1 Haselich
et al. is the first to mention the inability to adapt quickly to new environments due
to the requirement of reannotation.

Consequently, a significant amount of visual perception path planning research fo-
cuses on semi-supervised, self-supervised, and online learning. Teleoperation has
been used to define optimal routes to infer path and nonpath labels for visual
classifiers.47 Ross et al. identify obstacles with an unsupervised, online technique
that compares visual appearance and structure to learned environment models.10

Roncancio et al. adapt a pretrained supervised visual classifier online to identify
traversable and non-traversable paths.9

Other techniques pair vision with complimentary sensors. Visual features have been
used to enhance radar ground prediction.3 The correspondence between visual fea-
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tures and a robot’s navigation experience (e.g., slippage) was used to identify traver-
sable terrain.34 Lookingbill et al. used a reverse optical flow technique to update 
visual classifiers with the appearance of obstacles beyond the range of stereo 
vision.36 Other self-supervised learning examples include combining vision and 
LiDAR.35,37

These examples adapt terrain classifiers without the time-consuming labeling pro-
cess. However, the lack of human supervision has limited most of this work to
binary classification (e.g., traversability). Unfortunately, these approaches do not
extend to more complex multiclass tasks such as verbal navigation commands from
human to robot.38

3. Reducing Adaptation Latency
Our labeling system is designed to be quick and efficient so new sets of labeled
training data can be easily collected by a single human annotator. Our approach,
called hierarchical cluster guided labeling (HCGL), iteratively selects clusters to
label from a hierarchical clustering of the data samples. Before motivating our use
of hierarchical clustering and discussing details of our group selection criteria, we
overview the traditional supervised labeling approach used to label environment
images.

3.1 Supervised Labeling
Supervised label collection produces high quality labeled data, but is time consum-
ing for 2 reasons: 1) training sets are typically large and 2) images capture multiple
terrains and objects in the scene that need to be localized before label assignment.
Image annotation tools such as LabelMe48 have been used to facilitate supervised
labeling. LabelMe allows annotators to precisely outline, via mouse clicks, and
assign labels to each distinct region. Figure 1 is an example of a training image
(left), required outlining (middle) and labeled output (right; see class/color legend
in Fig. 18) using LabelMe. Labeling 250 images requires over 20 h of effort (dis-
cussed in Section 4), causing high latency during domain changes and inhibits fast
adaptation.

6
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Fig. 1 Example image, outline annotation and label results of a supervised labeling process

The goal of this work is to train supervised multi-concept visual classifiers using
large amounts of labeled environment data with limited human interaction. We use
the HCGL framework,49 originally designed to cluster and label groups of single-
concept images. We discuss HCGL and several modifications made to the frame-
work to better suit real-world environment data. After discussing the efficient label
collection technique, we compare HCGL to supervised labeling with LabelMe to
demonstrate the speedup achieved.

3.2 Hierarchical Motivation
As previously mentioned, many group-based labeling techniques have emerged.
One major disadvantage of group-based labeling is the addition of label noise when
images in the same group represent multiple visual concepts. We hypothesize that
label noise collected by partitional group-based labeling approaches is caused in
large part because the unsupervised grouping algorithm learns feature patterns that
map to a different concept granularity than the concepts of interest for the classifi-
cation task.

Visual concepts are hierarchical. Figure 2 includes example images from 2 single-
concept benchmark classification data sets, 13-Scenes50 and Caltech-256.51 The la-
bels in red indicate the concept granularity these benchmark data sets would use
to evaluate supervised classifiers. However, note that all labels associated with an
image are valid visual concept descriptions, and represent a progression of descrip-
tions from coarse-grained to fine-grained.

7
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inside, kitchen outside, mountain 

(a) Scene images and labels
animal, dog, dachshund vehicle, bike, mountain-bike 

(b) Object images and labels

Fig. 2 Examples of coarse- and fine-grained visual concepts for benchmark data images,
where labels in red indicate the label used for benchmark classification evaluation

The label set of interest to a classifier (which is task dependent) is denoted as Y ,
where |Y| = K. In the object labeling example, dog ∈ Y . The goal of partitional
grouping techniques is to find a partition ofK groups such that each group maps to a
label in Y . Grouping is influenced by feature representation and intraclass and inter-
class similarity, which are hard to manage explicitly with an unsupervised grouping
algorithm. In many cases, a grouping algorithm may identify a pattern in the data
that represents a coarser- or finer-grained concept than those defined in Y . For ex-
ample, in the 13-Scenes data set groups of images representing coast and highway

share a coarse-grained open quality since the horizon is visible in both classes.
Alternatively, images might be grouped at the fine-grained level of dog, cow, and
sheep when the task is only interested in animal.

Instead of forcing groupings to occur at a particular level of granularity, we use hi-
erarchical clustering to maintain a spectrum of pattern similarities encoded in image
groupings. Figure 3 illustrates this approach with 5 classes from the 13-Scenes data
set. We denote the hierarchy as H. Nodes colored black correspond to groups that
contain images from multiple scene classes. The remaining colors indicate groups
of images from a single scene class. There is an obvious division of the hierarchy
into 4 groups: tall building (green), living room (blue), suburb (yellow), and the
coarse-grained concept of open (dashed outline) previously mentioned. The many
smaller, interweaved partitions of the coast (red) and highway (orange) classes, as
subtrees of the open partition, are evidence of high interclass similarity.

8
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openness (visible horizon) open (visible horizon) 

Fig. 3 Hierarchical clustering of 5 classes from the 13-Scenes data set. Node colors
indicate what class the images in the cluster represent: yellow-suburb, blue-living room,
green-tall building, red-coast, and orange-highway. The section of the hierarchy outlined by
the dotted line highlights the data grouped as the coarse-grained visual concept open.

Maintaining the hierarchical structure provides many unique benefits to our label-
ing framework. First, the number of clusters does not have to be known in advance.
Instead, the hierarchy allows each class to breakdown coherently at its own pace
(i.e., at different levels in H). Second, the hierarchical relationships provide infor-
mation about how feature patterns change as data are further refined into smaller
groups. Later in this section, we describe how we use these relationships to define
interestingness and guide our search for clusters that should be labeled. Third, the
hierarchical clustering avoids latency during labeling. If the system asks the user
to label a cluster that is too high in the tree (i.e., too coarse-grained for the label
set Y), the user marks it as too coarse and the system immediately has access to
the subtree below it, representing possible finer-grained concepts. No reclustering
is necessary, and no classifier has to be retrained while the user waits.

3.3 Iterative Selection and Labeling
Hierarchical clustering is not the solution to the label collection problem but rather
an encoding of information that the HCGL framework uses to solve the labeling
problem. At a very high level, HCGL is simply an iterative group-based labeling
technique. That is, HCGL selects a group from the hierarchy and displays the im-
ages in the group to a user who assigns it a label. This process repeats until there
are no more groups to be labeled or, more likely, the user runs out of time.

Figure 4 illustrates a single labeling interaction in the iterative HCGL process and
its use of majority group-based labeling. Since most images in the group are of a
dog, the group is labeled as such. The images in this group that do not represent dog

become examples of label noise. Annotators are encouraged to only supply labels

9



Approved for public release; distribution is unlimited.

to groups of images that are dominated by a single label in Y , to keep the level of
noise down. When HGCL mistakenly selects a group that is not dominated by a
single label, the annotator labels it as too coarse, telling HCGL that it selected a
node too high in the hierarchy for this branch of the tree.

Add label to H

Fig. 4 Illustration of a labeling iteration performed by HCGL

We note that the iterative labeling process may terminate before all the training
data have been labeled. This framework is designed around the assumption that in
many real-world applications, labeling a large set of training data in its entirety is
not feasible. Thus, the group selection technique employed by HCGL is a primary
contribution of this work. Groups need to be selected in such a way that a diverse
and accurate set of training data can be collected even when users only have a small
amount of time to devote to labeling.

Group-based labeling is beneficial for these types of real-world applications since
multiple images are labeled with a single labeling query, leading to efficiency gains.
However, unlike partitional grouping approaches, which create a set of disjoint
groups and ask the user to assign a label to each group, HCGL must select groups
from H, which contains nondisjoint groups and some redundant information. For
example, if cluster c in Fig. 5 contains dog images, it must be true that its children,
cr and cl, represent the same concept since they each contain a subset of images
represented in c. Thus, the selection order of groups in H is meaningful because
descendants of a labeled group (according to the structure in H) can inherit labels

10
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without being viewed and labeled by the annotator. The remainder of this section
focuses on the novel technique HCGL uses to select groups from H during the
iterative labeling process.

p

c

cl	
   cr	
  

Fig. 5 Illustration that depicts the relationships for group c in a local neighborhood ofH,
including its parent p and left and right children, cl and cr

3.4 Group Selection
HCGL group selection is designed to balance the labeling objectives of discovery,
efficiency, exploitation, and accuracy. To do this, we define the following heuristic
criteria for groups inH:

1) Interestingness: the degree of structural change seen after a split inH

2) Exploitation: the number of samples that would receive labels

3) Exploration: the likelihood that a group represents a different concept from
those previously labeled

These 3 criteria are discussed individually in detail, followed by a discussion of
how the criteria are combined to create our novel group selection criteria.

3.4.1 Interestingness
The hierarchy encodes groups of data that span a spectrum of concept granulari-
ties, but the classification task, and thus the labeling task, focuses on a specific but
initially unknown set of labels Y . This means that for HCGL to be successful, the
algorithm must find locations (image groups) in H that are most likely to repre-
sent a single label in Y . As stated previously, we assume no a priori knowledge
of Y . Instead, HCGL compares the image features in hierarchically related groups
to measure local structural change. More specifically, interestingness is defined as

11
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the degree of change at a split in H. The idea is that feature similarities encoded
inH map to coarse- and fine-grained visual concepts. When underlying patterns of
similarity change, it is likely that a visual concept transition has also occurred.

HCGL compares the structural change between a cluster, c, and its parent, p (this
relationship can be seen in Fig. 5). The internal structure of c is derived from its
data matrix, Xc, where each column is an image represented by a d-dimensional
feature vector:

Xc =


x1,1 x2,1 · · · xs,1

x1,2 x2,2 · · · xs,2
...

... . . . ...
x1,d x2,d · · · xs,d

 (1)

The data are mean centered, X̂c = Xc − X̄c, and the covariance matrix of X̂c is
decomposed and represented by its eigenvectors, Vc, using singular value decom-
position:

Vc Λc V
−1
c = SV D(Cov(X̂c)) (2)

= SV D

(
X̂cX̂c

T

s− 1

)
(3)

This representation of internal structure models the direction of variance in the data.
Given that the diagonal entries of Λc are sorted in descending order, the first eigen-
vector, vc1, in Vc provides the axis of maximum variance for c.

The structural change between c and p is calculated as the angle between the first
eigenvectors, vc1 and vp1, of c and p, respectively. Larger angles indicate greater
differences in directions of variance and are therefore more interesting. Formally,
interestingness derived from structural change for group c is defined as the cosine
distance,

∆(c) = 1.0− 〈vc1, vp1〉, (4)

which yields values on the interval of [0.0, 1.0] with large ∆ values representing
large angles. The idea behind this type of selection is to order groups by the strength
of their potential concept transition.

12
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3.4.2 Exploitation
Exploitation selection is based on the number of unlabeled samples in a cluster.
This criterion is designed to label larger clusters first to emphasize the efficiency
objective and collect a large set of labeled data quickly. In other words, cluster c in
Fig. 5 has a higher exploitation value than both cl and cr since each contain a subset
of c’s images, resulting in fewer labeled images per labeling query.

However, the exploitation value is not necessarily equal to the number of images in
a group, because some of the descendant groups may already have been labeled in
a previous iteration of HCGL. This set of previously labeled groups is denoted as
L. Formally, the exploitation score for group ci is defined as

ξ(ci) = |ci| − |{xi |xi ∈ cj , cj ∈ L , cj ⊂ ci}|. (5)

Since exploitation is based on L, the ξ values change after each labeling iteration.

3.4.3 Exploration
Exploration spreads group labels throughout H to better explore the feature space
as a way of discovering groups that represent concepts that have yet to be labeled.
Exploration values iteratively change throughout the labeling process because they
are computed with respect to L. Specifically, the exploration score for cluster ci is
the shortest path in the hierarchy between it and the nearest labeled cluster,

φ(ci) = min
cj∈L

path-length(ci, cj), (6)

where the path length between ci and cj is the combined number of edges traversed
by each node to reach their first common ancestor. For example, cl and cr in Fig. 5
have a path length of 2 where their first common ancestor is c. Exploration ordering
labels clusters with the longest path length first (i.e., groups that are least similar to
groups already discovered and labeled).

3.4.4 Multi-Objective Combination
The 3 heuristic criteria are designed to emphasize different objectives when collect-
ing labeled training data for supervised classifiers. Since each objective is impor-
tant to the problem, we define a multi-objective, rank-based combination criterion.
In this combination, the set of unlabeled groups, U , are ranked according to the
3 criteria individually, and the rankings are linearly combined to produce a multi-
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objective ranking score for each cluster ci:

ψ(ci) = β1 rank(∆(ci), {∆(cj) | cj ∈ U})

+ β2 rank(ξ(ci), {ξ(cj) | cj ∈ U})

+ β3 rank(φ(ci), {φ(cj) | cj ∈ U}).

(7)

Each βi is a weight for its ordering objective such that β1 + β2 + β3 = 1.0. For all
experiments in this report, the objectives are weighted evenly, β1 = β2 = β3 = 1

3
.

The rank function is passed a group’s score and the set of scores for all other groups
in U , and returns the group’s rank with respect to the set. The group with the highest
combined ranking is selected as the next labeling query.

Any one of the heuristics could be used independently to select the next group
to label; however, exploitation and exploration selections are not very interesting
on their own. Exploitation essentially performs a breadth first search of H, and
exploration will mostly choose leaf nodes in H as these produce the longest path
lengths. To allow the technique to generalize to any of these selection heuristics, the
selection criteria is not performed on the entire unlabeled set, but a set of the most
interesting groups from H, denoted as S. This set S is constructed by comparing
a group’s interestingness score to the distribution statistics of all interestingness
scores from unlabeled groups. Formally,

∆̄ =
1

|U|
∑
∀ci∈U

∆(ci) (8)

σ∆ =

√
1

|U|
∑
∀ci∈U

(∆(ci)− ∆̄)2. (9)

We refer to the groups with structural change values at least one standard deviation
beyond the mean as outliers, and thereby, the most interesting set of groups:

S = {ci |∆(ci) > ∆̄ + σ∆}. (10)

Algorithm 1 summarizes the generalized iterative HCGL framework, where the
selection-criterion requirement defined on line 1 could represent any of the follow-
ing: HCGL-Interestingness (Eq. 4), HCGL-Exploitation (Eq. 5), HCGL-Exploration
(Eq. 6), or HCGL-Combined Ranks (Eq. 7).
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Algorithm 1 Hierarchical cluster guided labeling

Require: H, selection-criterion = {∆, ξ, φ, ψ}
1: U = {ci | ci ∈ H}
2: while U 6= ∅ && user==True do
3: threshold = ∆̄ + σ∆

4: S = {ci |∆(ci) > threshold, ci ∈ U}
5: Update selection-criterion scores ∀ci ∈ U
6: S = sort(S , selection-criterion)
7: label query→ S[0]
8: Update L and U

3.5 HCGL for Multi-Concept Images
In the context of semantic scene labeling, every pixel in a multi-concept image
needs to be assigned a label. Since HCGL clusters data under the assumption that
each training sample represents a single concept, images must be segmented into
multiple regions. We oversegment images into approximately 150 regions using
simple linear iterative clustering (SLIC).52 Oversegmentation is performed to en-
sure that true region boundaries are observed in the training samples. Each segment
becomes a training sample that is described by a feature vector composed of LAB
color histograms, local binary patterns,53 a 200-dimensional codebook of scale-
invariant feature transform (SIFT) descriptors,54 and normalized region coordinates.
The resulting feature vectors are then hierarchically clustered using agglomerative
clustering. For all experiments, we use Ward’s linkage and Euclidean distance to
create the hierarchy. An illustration of the HCGL framework running on image re-
gions is shown in Fig. 6. Node colors map to a class in the label set Y and black
wedges represent the percentage of noise in each cluster (images not representing
the dominating class).
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Fig. 6 Visualization of the HCGL process on multi-concept environment data

4. Speed and Classification Experiments
To demonstrate the speed and real-world feasibility of HCGL, we present results
of experiments labeling real-world data in outdoor environments. Specifically, we
present results showing pixel labeling rate and classification accuracy as a func-
tion of interaction time, where interaction time is the total time a human spends
waiting for and answering labeling queries from a system. Thus, interaction time
includes any latency introduced by techniques that recluster or retrain classifiers.
This evaluation is motivated by autonomous mobile robotics applications that fre-
quently change domains or environments, and need to quickly train classifiers to
learn new terrains and objects with relatively low operator overhead.

We use 3 real-world environments to demonstrate the speed and performance of
HCGL when collecting labels for multi-concept visual perception. The environ-
ments are outdoor urban training facilities that include multiple types of terrain,
buildings, cars, and other objects. Training data for environment A were collected
with a high dynamic range camera. Images were taken at 5 different time blocks
over 2 days from 53 locations in the environment.55 Training data for environment
B and C were captured via teleoperation using the robot described in Section 5. The
training set from Environment B is the combination of data collected on 3 consecu-
tive days and is therefore much larger than the other sets. Performance on this data
set shows how HCGL scales with increasing training set sizes. An overview of the
data sets is provided in Table 1 and example images are provided in Fig. 7.
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Table 1 Details of the real-world environment data sets

Environment No. Training images Label set (Y)
A 274 asphalt, building, concrete, grass, gravel, object, sky, tree
B 1,982 building, car, grass, object, road, sidewalk, sky, tree
C 268 building, car, curb, grass, object, road, sidewalk, sky, tree
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Fig. 7 Example images from the 3 environment training sets

For these experiments, we compare HCGL to the supervised labeling baseline, La-
belMe, where training images are labeled in random order. We do not make direct
comparisons to other existing efficient labeling frameworks because most frame-
works do not provide interfaces for real-time labeling. We hypothesize that the
latency introduced by data reclustering may inhibit the real-world practicality of
such interfaces. Pixel-wise labeling and classification accuracy are evaluated as a
function of labeling interaction time (i.e., adaptation latency) to show the speed at
which techniques can collect multi-concept scene labels for visual classifiers.

4.1 Labeling Speed and Label Accuracy
The first experiment looks at how fast HCGL and LabelMe assign labels to pixels
in the training images. Figure 8 shows the percentage of labeled pixels as a func-
tion of time. There is a large performance gap seen across all data sets. Given a
fixed training time, HCGL collects around 6 to 7 times the amount of label infor-
mation as LabelMe. Labeling interaction time for environment B is on the order of
hours because each of the 3 days of training data were labeled separately and then
combined.
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Fig. 8 Comparison of labeling rate using HCGL and LabelMe on the 3 data sets. Dashed
blue lines depict the percentage of labeled pixels that received correct labels from HCGL

Assigning labels quickly is important, but recall that to achieve this speed, HCGL
incurs some label noise as a result of majority labeling. The dashed blue lines in the
plots show the percentage of pixels that received accurate labels from HCGL (deter-
mined using the labels collected by LabelMe). This line represents approximately
5%-10% pixel label noise: a small fraction for a large gain in efficiency.

4.2 Pixel-Wise Classification
Next, to test environment perception using labels from HCGL and LabelMe, we
train a Hierarchical Inference Machine (HIM),16 an approach for scene parsing and
region classification. HIMs incorporate both feature descriptors and contextual cues
computed at multiple scales within the scene. Images are decomposed into a hier-
archy of nested superpixel regions,56 where regions at the bottom provide localized
discriminative information and those at the top provide global context. The predic-
tor is a decision forest regressor with 10 trees. Features extracted from superpix-
els include SIFT descriptors,54 LAB colorspace statistics, texture information, and
statistics on the size and shape of superpixel regions.
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4.2.1 Environment A
Pixel-wise classification accuracy is compared on a testing set from Environment
A, which consists of 265 images. This is the only environment data set with a large,
hand-labeled testing set.55 Classification evaluation is performed incrementally af-
ter every 15 min in which a user assigns labels to the training set. Figure 9 shows
the overall pixel accuracy for environment A. Even though HCGL introduces small
amounts of label noise, the larger volume of labeled training data allows HCGL to
train higher performing HIMs than LabelMe through 210 min of labeling interac-
tion. HCGL labeling is terminated at this point to depict scenarios with limited time
to devote to label collection.
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Fig. 9 Comparison of the overall pixel classification accuracy for environment A

Overall pixel classification accuracy can be skewed by classes with more pixels
(pixel distributions can be seen in Fig. 10). Thus, we also evaluate per-class classi-
fication accuracy and find that HCGL performs similarly or better than LabelMe for
all classes but one, as shown in Fig. 11. The object class is the least represented in
the data and is composed of many diverse things (e.g., light poles, traffic cones, and
cargo boxes). The low intraclass similarity makes it difficult for samples to group
together in HCGL. Instead, samples of object are dispersed almost randomly across
the hierarchical clustering and are often mislabeled as part of clusters dominated
by other classes. As a result, HCGL achieves lower accuracy than LabelMe on this
class. However, this is a poorly defined “other” class, and is difficult for LabelMe
as well. With a fully labeled training set (1,602 min), LabelMe achieves only ap-
proximately 18% classification accuracy for the object class.
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Fig. 10 Breakdown of class distributions across all pixels in the training set of
environment A

20



Approved for public release; distribution is unlimited.

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

15
"

30
"

45
"

60
"

75
"

90
"

10
5"

12
0"

13
5"

15
0"

16
5"

18
0"

19
5"

21
0" …
"

40
0" …
"

80
1" …
"

12
01
"

…
"

16
02
"

Cl
as
si
fic
a(

on
+A
cc
ur
ac
y+

Labeling+Interac(on+(Minutes)+

Asphalt+LabelMe" HCGL"

(a)

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

15
"

30
"

45
"

60
"

75
"

90
"

10
5"

12
0"

13
5"

15
0"

16
5"

18
0"

19
5"

21
0" …
"

40
0" …
"

80
1" …
"

12
01
"

…
"

16
02
"

Cl
as
si
fic
a(

on
+A
cc
ur
ac
y+

Labeling+Interac(on+(Minutes)+

Building+LabelMe" HCGL"

(b)

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

15
"

30
"

45
"

60
"

75
"

90
"

10
5"

12
0"

13
5"

15
0"

16
5"

18
0"

19
5"

21
0" …
"

40
0" …
"

80
1" …
"

12
01
"

…
"

16
02
"

Cl
as
si
fic
a(

on
+A
cc
ur
ac
y+

Labeling+Interac(on+(Minutes)+

Concrete9Floor+LabelMe" HCGL"

(c)

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

15
"

30
"

45
"

60
"

75
"

90
"

10
5"

12
0"

13
5"

15
0"

16
5"

18
0"

19
5"

21
0" …
"

40
0" …
"

80
1" …
"

12
01
"

…
"

16
02
"

Cl
as
si
fic
a(

on
+A
cc
ur
ac
y+

Labeling+Interac(on+(Minutes)+

Grass+LabelMe" HCGL"

(d)

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

15
"

30
"

45
"

60
"

75
"

90
"

10
5"

12
0"

13
5"

15
0"

16
5"

18
0"

19
5"

21
0" …
"

40
0" …
"

80
1" …
"

12
01
"

…
"

16
02
"

Cl
as
si
fic
a(

on
+A
cc
ur
ac
y+

Labeling+Interac(on+(Minutes)+

Gravel+LabelMe" HCGL"

(e)

0"
0.02"
0.04"
0.06"
0.08"
0.1"

0.12"
0.14"
0.16"
0.18"
0.2"

15
"

30
"

45
"

60
"

75
"

90
"

10
5"

12
0"

13
5"

15
0"

16
5"

18
0"

19
5"

21
0" …
"

40
0" …
"

80
1" …
"

12
01
"

…
"

16
02
"

Cl
as
si
fic
a(

on
+A
cc
ur
ac
y+

Labeling+Interac(on+(Minutes)+

Object+LabelMe" HCGL"

(f)

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

15
"

30
"

45
"

60
"

75
"

90
"

10
5"

12
0"

13
5"

15
0"

16
5"

18
0"

19
5"

21
0" …
"

40
0" …
"

80
1" …
"

12
01
"

…
"

16
02
"

Cl
as
si
fic
a(

on
+A
cc
ur
ac
y+

Labeling+Interac(on+(Minutes)+

Sky+LabelMe" HCGL"

(g)

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

15
"

30
"

45
"

60
"

75
"

90
"

10
5"

12
0"

13
5"

15
0"

16
5"

18
0"

19
5"

21
0" …
"

40
0" …
"

80
1" …
"

12
01
"

…
"

16
02
"

Cl
as
si
fic
a(

on
+A
cc
ur
ac
y+

Labeling+Interac(on+(Minutes)+

Tree+LabelMe" HCGL"

(h)

Fig. 11 Comparison of class-specific classification accuracy for environment A
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In applications with limited time for label collection, it can be tempting to run
HCGL with the exploitation heuristic only (Eq. 5) to collect as many labels as pos-
sible in the allotted time. We compare HCGL-exploitation and HCGL-combined
ranks to once again show the importance of balancing all ordering criteria during
the labeling process even under applications with limited labeling time.

As designed, HCGL-exploitation focuses on labeling large groups of data quickly.
This results in a small number of classes receiving a large number of labels early in
the labeling process because of skewed class distributions. Most of the labeled train-
ing samples represent either sky, grass, or building. This ultimately produces worse
HIM classifiers than HCGL-combined ranks and LabelMe. A subset of classifica-
tion results are shown in Fig. 12, and Fig. 13 shows some examples of classified
images from the test set.
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(b) Class with small distribution of pixels.
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Fig. 12 Comparison of classification accuracy for environment A using the
HCGL-exploitation selection heuristic
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Fig. 13 Examples of classified test images from environment A that illustrate the
weaknesses of HCGL-exploitation and LabelMe compared to HCGL-combined ranks
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4.3 Environment B
Labeled test sets from environments B and C are not available, but we provide a
qualitative pixel-wise classification comparison of HCGL and LabelMe. Figure 14
shows 6 example test images from environment B. We use LabelMe to create
ground truth for these images, seen in the bottom row. Classifiers are trained us-
ing labeled data at the third markers from Fig. 8b. The selected examples show
2 instances where the classifiers perform similarly, an example where HCGL per-
forms slightly worse than LabelMe (column 3), and the last 3 columns are exam-
ples of HCGL’s superior performance and illustrate the common mistakes made
by the classifier trained using LabelMe. Specifically, the LabelMe classifier often
misidentifies terrain further from the camera. This allows robots to make immediate
decisions, but negatively impacts long-term path planning. Qualitatively it can also
be seen that HCGL commonly misclassifies trees and certain objects as sky, which
are less costly for our navigation task. These mistakes occur because the tree and
object classes are less represented than sky in the training set, so fewer examples are
collected by HCGL. However, the overall HCGL performance on these classes is
still qualitatively high. Overall, HCGL collects significantly more label information
even with 25% less human interaction time and trains higher-performing classifiers.
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Fig. 14 Qualitative comparison between HCGL and LabelMe with a test set from
environment B
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5. Real-Time Navigation Experiments
Pixel-wise accuracy quantitatively compares techniques on static data, but task-
based evaluation judges perception relative to the end goal of successful navigation
in outdoor environments. We compare several visual classifiers trained using la-
bels collected by HCGL and LabelMe based on their ability to provide perception
information to a real-time mapping and navigation framework.57

5.1 Task Description
Our live navigation task requires a robot to use visual perception to plan paths be-
tween waypoints using specified terrain. These terrains are defined based on the
composition of the road at testing locations. We use road traversal because roads
are designed to provide navigation guidance to vehicles. For example, roads direct
vehicles around buildings and hazards like bodies of water. Our experiments emu-
late these scenarios by defining waypoints (seen in Fig. 15) such that the most direct
path to goals is not along a road.

Imagery ©2015 Google, Map data ©2015 Google 100 ft

Fort Indiantown Gap, PA

Fort Indiantown Gap, PA - Google Maps https://www.google.com/maps/place/Fort+Indian...

1 of 1 08/28/2015 11:24 AM

(a) Environment A (b) Environment B

Fig. 15 Navigation waypoint maps for environments

Classifiers are compared based on successes and failures during multiple trials of
the navigation task, where outcomes are defined as follows:

• Success: the robot autonomously traverses between waypoints using only
road terrain without hitting objects.

• Success with minor errors: the robot traverses between waypoints but either
1) traverses on non-road terrain for a short duration or 2) requires operator
intervention at least once but no more than twice for small adjustments in
location or direction due to potential object collision or planner failure.
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• Failure: the robot cannot plan and execute a road traversal even with minimal
operator intervention, visual perception has significant false-positive errors
indicating no road path, or constant planner updates result in no progress
toward the goal.

5.2 Hardware
The robot used in this work, the Clearpath Husky seen in Fig. 16, is a 39× 26× 14

inch wheeled platform that is limited to a maximum velocity of 1 m/s. The Husky
employs a MicroStrain 3DM-GX3-25 IMU, a Garmin 18 GPS, and 2 Quad-Core
Intel i7 Mini-ITX processing payloads, each with a 256-GB SSD running Ubuntu
14.04, ROS Indigo, and experimental software. The Husky has a Velodyne HDL-
32E LiDAR, which generates 360◦ point clouds at a range of 70 m and an accuracy
of up to ±2 cm. Finally, the Husky collects image data using a Prosilica GT2750C,
a 6-megapixel charge-coupled device (CCD) color camera.

Fig. 16 Hardware configuration of the Clearpath Husky robot

5.3 Mapping and Navigation
Our robot test platform employs a mapping and navigation system to enable accu-
rate motion between desired waypoints. The mapping system, dubbed OmniMap-

per, consumes measurements from LiDAR for relative motion estimation and loop
closure through integrated color pixel (ICP),58 GPS measurements,59 and camera
images. A keyframe is created with each measurement as the robot moves through
its environment; the robot’s pose at this keyframe is optimized through GTSAM60

to minimize residual error from all measurements.
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A 2-D local occupancy grid is created from each laser-scan keyframe through ray-
tracing, where sufficient height above the ground is registered as an obstacle. When
a new keyframe is added or when a significant update is made to the map causing
keyframe poses to change, the 2-D occupancy grids are composited together into a
negative log-odds grid and thresholded into an obstacle map as in Fig. 17b.

A keyframe is also created for each classified image, and the pose of this record is
updated with the mapping process such as with loop closures or GPS measurements.
Whenever a new obstacle map is created, additional cells are marked as “obstacle”
if those cells, when projected into classified images, overlap with pixels classified
as one of the defined non-road terrains or an object class. In Fig. 17a, only asphalt

and concrete make up the road for this testing location.

(a) Environment (b) LiDAR map (c) Vision map

Fig. 17 Example obstacle maps for location 2 in the environment A. Darker regions
indicate obstacles and non-road terrain.

The corners of each map grid cell (10 × 10 cm) are projected into all classified
images that observe that cell within a range of 7 m. The classified images are recti-
fied so the projected corners define a quad in the classified image. Each pixel in the
projected quad has a label from the classifier and votes for that class to be applied
to the ground cell. The ground cell is assigned the label with the highest number of
votes. If this label does not represent road for navigation, the occupancy grid cell is
given an obstacle value to prevent traversal through that cell. As seen in Fig. 17c,
visual perception helps produce cost maps with specific terrain information (e.g.,
gravel regions are darker and avoided during path planning; discussed further in
Section 5).

A kinematically feasible path is computed from the robot’s current location to the
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goal location using the Search-Based Planning Library (SBPL)61 using a set of mo-
tion primitives generated to match the Husky’s kinematics. A smoothed local plan
is chosen that follows the global plan closely while avoiding local obstacles not yet
present in the global map. Planner failures occur if the occupancy grid prohibits an
obstacle free path to the goal. This occurs in our experiments due to false-positive
non-road classifications on road terrain. See Gregory et al.62 for more implementa-
tion details of the mapping and navigation systems used in this work.

5.4 Navigation Results: Environment A
Environment A is the primary location used for comparative evaluation since La-
belMe was used to label its entire training set.55 Four classifiers are trained and
compared. We compare the labeling techniques given the same amount of labeling
interaction time. HCGL-150 and LabelMe-150 represent classifiers trained after
150 min of labeling, which reflects scenarios where limited labeling time is avail-
able. This is just under one-tenth of the estimated total time (1,602 min) required
to label the entire training set with LabelMe. To demonstrate results given no time
restrictions, a classifier is trained using the entire training set, denoted as LabelMe-
1602.

The final classifier is meant to show the benefits of using training data representing
the most recent state of a robot’s environment and how HCGL easily facilitates
the labeling of data upon arrival to a new or changed environment. We supplement
the existing training set (collected several years ago) with 231 additional images
collected during our experiments (disjoint from testing locations). Labeling was
performed for 30 min with HCGL, and approximately 27% of the pixels in the
new images were assigned labels. Without ground truth for this set, the amount
of collected label noise is unknown. This set of labeled data is combined with the
labeled data from HCGL-150 to train the final classifier, denoted as HCGL-150+30.

Navigation experiments are performed at 2 locations in the environment. Location
1 is illustrated with red waypoints in Fig. 15a, and roads are composed of gravel,
concrete, and asphalt. Thus, path planning must avoid grass terrain (the shortest
path between waypoints) and several objects near the edge of the grass and road.
Each trial represents a traversal from one waypoint to the other and are performed
in both directions. Trials were run across multiple days and different times of day to
capture performance under varying environment conditions. Table 2 compares the
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performance of each classifier at this first location.

Table 2 Summary of navigation results for location 1 (red waypoints) in environment A

% Successes
Label Model No Errors Minor Errors % Failures
HCGL-150 0.500 0.000 0.500

LabelMe-150 0.333 0.167 0.500
LabelMe-1602 0.250 0.250 0.500
HCGL-150+30 0.875 0.125 0.000

HCGL-150 and LabelMe-150 perform similarly and inconsistently with a 50% fail-
ure rate. LabelMe-1602 exhibits the same failure rate, but also displays more mi-
nor errors during its successful trials. LabelMe-1602 uses the most labeled data to
learn class boundaries with respect to the training set, but performs worse because
the learned class boundaries changed. The classifiers trained after 150 min likely
learned less definitive class boundaries, making the environment changes less detri-
mental. Some observed changes from the training data include grass length, cloud
coverage, and illumination. HCGL-150+30, on the other hand, performs the navi-
gation task very reliably, because it represents a classifier that has adapted to the
changed environment with new and additional training data. Minor errors involved
the robot trying to plan a shortest path through the grass, entering the grass for a
brief moment before backing out, and successfully planning a road traversal route.
These results demonstrate the positive impact of rapid label collection, even if a
small fraction is noisy, when new training data are needed to adapt and improve
visual perception.

Qualitative evaluation of visual perception shows the labeling models produce clas-
sifiers that make different mistakes. Figure 18 includes examples explicitly chosen
to depict some of the worst classified images by one or more models. HCGL-150
had many false-positive concrete classifications, which can be seen best in columns
1, 3 and 4. Columns 3 and 5 highlight that LabelMe-150 produced more false-
positives of object and building classes on what was actually road terrain. LabelMe-
1602 has cleaner results than the previous models, but also often misclassified
gravel as object (seen in column 3), and tended to misclassify trees as buildings

(seen in columns 1 and 2). Although still not perfect classification, HCGL-150+30
has the most accurate results compared to the ground truth, which yielded its su-
perior navigation success and highlights the importance of being able to quickly
collect large amounts of new labeled training data given environment changes.
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Fig. 18 Visual perception examples for each labeling model. Images in the first 3 columns
are from the first location (red waypoints), and the last 3 columns are images from the second
location (blue waypoints)

The second location is depicted in Fig. 15a with blue waypoints. At this location,
roads are composed of concrete and asphalt, whereas gravel terrain (shortest path
between waypoints) is not road. Along the shortest road path are 2 objects (traffic
cones) that the robot must also avoid. Terrain classification for classes with high
interclass similarity is important for successful traversal during this test.

Comparisons are made between LabelMe-1602 and HCGL-150+30; the most suc-
cessful models at the first location in terms of successes and qualitative evaluation.
Results are summarized in Table 3 and indicate that this navigation task is more
challenging. However, HCGL-150+30 is still able to successfully navigate the ma-
jority of the time with only minor errors. Most failures and errors at this location
were caused by classification confusion of asphalt and gravel. This can be seen in
the last 3 columns of Fig. 18.
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Table 3 Summary of navigation results for location 2 (blue waypoints) in environment A

% Successes
Label Model No Errors Minor Errors % Failures

LabelMe-1602 0.000 0.000 1.000
HCGL-150+30 0.375 0.250 0.375

5.5 Navigation Results: Environment B
We use environment B, seen in Fig. 15b, to further test HCGL label collection
in new domains. In this environment, roads are composed of a single terrain type
labeled as road, and all other terrains and objects should be avoided during path
planning. Training data for this environment were not available prior to the exper-
iment, so data were collected upon arrival. We chose to focus our navigation trial
experiments on labels collected using HCGL to show the consistency of the system
across multiple environments.

An in-depth discussion and analysis of experiments in this environment is omitted,
but examples of the robot perception in this environment were seen in Fig. 14. Over
15 navigation trials were performed between both waypoint sets without any failure
cases. Only minor path planning errors in a few trials caused the robot to traverse on
the edge of the grass where it meets the road. These successes are used to confirm
that small amounts of label noise collected by HCGL, in exchange for fast label
collection, does not negatively impact path planning.

6. Conclusion and Future Work
Real-time visual perception for mobile robots is only as useful as its ability to
quickly adapt to changing environments. We discussed an efficient label collection
technique, HCGL, for multi-concept environment data. It was shown that while
HCGL trades some label accuracy for reduced adaptation latency, this label noise
does not significantly impact visual perception for navigation. Using this technique,
high-quality visual perception can be obtained in new environments with only a few
hours of labeling effort from a human annotator.

The multi-concept semantics provided by HCGL allow this work to generalize to
more complex variations of path planning tasks. This includes assigning variable
costs to terrains based on robot capabilities and path planning with verbal naviga-
tion cues given during human-robot interaction. Future work also includes augment-
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ing HCGL to be even more effective through online label collection and adaptation.
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